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Focal adhesions (FAs) mechanically couple the extracellular
matrix to the dynamic actin cytoskeleton, via transmembrane
integrins and actin-binding proteins. The molecular mecha-
nisms by which protein machineries control force transmission
along this molecular axis (i.e. modulating integrin activation
and controlling actin polymerization) remain largely unknown.
Talin is a major actin-binding protein that controls both the
inside-out activation of integrins and actin filament anchoring
and thus plays a major role in the establishment of the actin-
extracellular matrix mechanical coupling. Talin contains three
actin-binding domains (ABDs). The N-terminal head domain
contains both the F3 integrin-activating domain and ABD1,
whereas the C-terminal rod contains the actin-anchoring ABD2
and ABD3. Integrin binding is regulated by an intramolecular
interaction between the N-terminal head and a C-terminal five-
helix bundle (R9). Whether talin ABDs regulate actin polymer-
ization in a constitutive or regulated manner has not been fully
explored. Here, we combine kinetics assays using fluorescence
spectroscopy and single actin filament observation in total
internal reflection fluorescence microscopy, to examine rele-
vant functions of the three ABDs of talin. We find that the N-ter-
minal ABD1 blocks actin filament barbed-end elongation,
whereas ABD2 and ABD3 do not show any activity. By mutating
residues in ABD1, we find that this activity is mediated by a
positively charged surface that is partially masked by its intra-
molecular interaction with R9. Our results also demonstrate
that, once this intramolecular interaction is released, the integ-
rin-bound talin head retains the ability to inhibit actin assembly.

Cell adhesion to the extracellular matrix plays a critical role
in many physiological functions, such as cell migration, inva-
sion, or epithelial basement membrane attachment. Among the
multiple adhesion structures, focal adhesions (FAs)5 play a

major role (1, 2). These multiprotein complexes couple various
extracellular matrices to the actin cytoskeleton via the trans-
membrane heterodimeric �� integrins and actin-binding pro-
teins (ABPs) (3, 4). The control of actin polymerization by ABPs
is thought to play an important role to initiate the formation of
the actomyosin stress fibers and control their tension by mod-
ulating their elongation. We showed previously that vinculin
blocks actin filament barbed-end elongation (5), whereas oth-
ers reported that VASP promotes the elongation of actin fila-
ment barbed ends in a processive-like manner (6, 7). Several
formins may also play a role in the formation and elongation of
stress fibers (8). However, despite these isolated characteriza-
tions, the respective roles of the multiple ABPs and their coor-
dination in this process are poorly understood.

The actin-binding protein talin plays a major role in FAs (9)
(Fig. S1). First, it acts very early to activate integrins. In
this process, the N-terminal PTB (phosphotyrosine-bind-
ing) domain, located in the head domain of talin, also known as
the F3 subdomain of the FERM (four-point-one, ezrin, radixin,
moesin) domain, binds to the cytoplasmic tail of the � subunit
of integrins to induce an allosteric conformational change
through the membrane, leading to the binding of the extracel-
lular domains to ECM with high affinity (10, 11). Talin head is
not constitutively active because F3 is buried by an intramolec-
ular interaction with the R9 five-helix bundle of the rod (12, 13).
Several mechanisms have been proposed to explain talin head
exposure in FAs. The binding of the N-terminal head of talin to
a PIP2-enriched membrane or to the RIAM (Rap1-GTP–
interacting adaptor molecule) protein could disrupt the F3-R9
interaction to expose F3, allowing integrin binding (13–16).
Talin head is also released by calpain-mediated proteolytic
cleavage (17). The isolated head domain of talin, resulting from
calpain cleavage, regulates adhesion dynamics (18).

In addition to its role in the inside-out activation of integrins,
talin anchors the actin cytoskeleton to FAs (19). Talin contains
three actin-binding domains (ABDs), also named actin-binding
sites (ABSs) (20). ABD1 spans along the F2 and F3 subdomains
of the FERM domain (21). ABD2 is located in the center of the
rod (22). ABD3, also known as THATCH (talin/HIP1R/Sla2p
actin-tethering C-terminal homology), is located at the C
terminus of the protein (23). The nanoscale organization of
mature FAs, revealed by superresolution, showed that the
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N-terminal ABD1 of talin is located proximal to the membrane,
whereas ABD3 extends deeper in the cell to anchor actomyosin
stress fibers (24). In this conformation, talin behaves as a
mechanosensor to transduce the force conveyed by the actin
cytoskeleton to FAs (25). These properties allow talin to sense
the rigidity of the ECM (26). Single molecule experiments
showed that force transduction involves the mechanical
stretching of the talin rod domain, which exposes cryptic vin-
culin-binding sites (27). Our previous work showed that vincu-
lin binding to mechanically stretched talin exposes its ABD,
known as vinculin tail, and reinforces actin anchoring (28, 29).
In cells, actomyosin force acts on talin via its ABD3 to expose
vinculin-binding sites and ABD2, locking talin into an actin-
binding configuration that stabilizes FAs (30).

Although actin binding to talin plays a major role in the
establishment of the actin-ECM mechanical coupling, the con-
tribution of the three ABDs of talin to the regulation of actin
polymerization is poorly understood. Here, we report the
detailed characterization of the ABDs of talin. We found that
the N-terminal ABD1 blocks actin filament barbed-end elonga-
tion, whereas ABD2 and ABD3 do not show any activity. This
activity is masked by the intramolecular interaction between
the F3 subdomain of ABD1 and R9. When ABD1 is exposed, it
associates with the cytoplasmic tail of integrin-�3 and inhibits
actin filament barbed-end elongation. Our study reveals a new
activity of talin and paves the way to understand the complex
regulation of actin assembly in FAs.

Results

Talin ABD1 inhibits actin filament barbed-end elongation

To determine the ability of talin constructs to regulate actin
assembly (Fig. S1, A and C), we first monitored barbed-end
elongation by measuring the increase in pyrenyl-labeled actin
fluorescence upon polymerization in the presence of spectrin-
actin seeds (5). In cells, multiple parameters can modify the
activity of proteins, such as the charge of membrane lipids, the
addition of phosphate groups by kinases, local gradients of
pH and cations, crowding effects, or the binding of partners.
Hence, in many instances, it proved informative to screen a
variety of physico-chemical conditions, including a mild reduc-
tion in ionic strength, before establishing the activity of actin-
binding proteins, such as formins, VASP, or vinculin (5, 31, 32).
Here, varying the ionic strength was sufficient to reveal a new
inhibitory activity of ABD1 (Fig. 1A). This activity of ABD1 is
higher at low ionic strength, with a half-maximum effect at 50
mM KCl (Fig. S2), which is the KCl concentration used by many
groups to establish the activity of actin-binding proteins (33). In
conditions where ABD1 inhibited actin polymerization, full-
length talin, ABD2, and ABD3 remained inactive (Fig. 1A).

The inhibition curve displays a sigmoidal shape (Fig. 1B),
suggesting a cooperative mode of binding. Alternatively, at low
concentration, ABD1 could be sequestered along the side of the
filaments, preventing it from altering barbed-end dynamics.
ABD1 abolished the elongation of spectrin-actin seeds but did
not inhibit, or slightly enhanced, the pointed-end elongation of
barbed-end capped gelsolin-actin complexes, indicating that

ABD1 blocks the elongation of actin filament barbed ends spe-
cifically (Fig. 1B).

For the activity of isolated ABD1 to play a physiological role,
a significant amount of ABD1-containing talin head, produced
by calpain-mediated proteolysis, must exist in cells. To verify
this point, we performed the biochemical fractionation of
chicken gizzard tissue, extensively used in studies on FA pro-

Figure 1. Talin ABD1 inhibits actin filament barbed-end elongation. A,
barbed-end elongation was measured in the presence of 100 pM spectrin-
actin seeds, 1 �M Mg-ATP–G-actin (10% pyrenyl-labeled) in the absence of
talin and in the presence of 1.5 �M full-length talin, 1.5 �M ABD1, 1.5 �M ABD2,
and 1.5 �M ABD3. This assay was performed at 25 mM KCl. B, barbed-end (BE)
elongation was measured in the presence of 100 pM spectrin-actin seeds, 1
�M Mg-ATP–G-actin (10% pyrenyl-labeled), and increasing concentrations of
ABD1 in the presence of 25 mM KCl (red points) and 100 mM KCl (blue points).
Pointed end (PE) elongation was measured in the presence of 25 nM gelsolin-
actin complex, 2 �M Mg-ATP–G-actin (10% pyrenyl-labeled), and increasing
concentrations of ABD1 (green points). The initial rates of pointed-end and
barbed-end elongation were plotted versus the concentration of ABD1. The
inset shows the detail of the red curve labeled BE (25 mM KCl) between 0 and 2
�M ABD1.
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teins, followed by Western blotting with an antibody directed
against talin head (Fig. S3A). We detected talin head in the
cytosolic (S1) and membrane (P1) fractions, whereas full-length
talin was found associated with the membrane fraction (P1)
only. In mild extraction conditions, full-length talin dissociated
from the membrane fraction (S2), whereas a large amount of
talin head remained associated with the membrane (P2) (Fig.
S3, B and C). These observations indicate that ABD1 probably
plays a role independent of the context of the full-length
protein.

The inhibition of barbed-end elongation is usually the signa-
ture of actin filament barbed-end capping proteins. However,
our kinetic assays did not rule out the possibility that talin
inhibitory activity results from the sequestration of actin mono-
mers. Our results, showing that the saturation of the actin fila-
ments by phalloidin completely abolished ABD1 activity, indi-
cate that ABD1 acts on the filaments and not on the monomers
(Fig. S4A). The effect of ABD1 on the linear relationship
between the elongation rate and the concentration of poly-
merizing actin can also provide valuable information about the
mechanism. In this assay, a capping protein is expected to
decrease the slope of the curve, whereas a monomer-
sequestering protein is expected to shift the curve without
affecting the slope. We observed that, at nearly saturating con-
centrations of ABD1, the elongation rate is dramatically
reduced (Fig. S4B). The abscissa intercept, which gives the crit-
ical concentration for actin assembly, is slightly shifted toward
the critical concentration of the free pointed end, which is the
usual signature of a barbed-end capping protein, but not fur-
ther, ruling out an actin-monomer sequestering activity.

In cells, profilin-actin is the main polymerizable actin spe-
cies, and profilin can participate in several mechanisms as a
co-factor in an unpredictable manner. It was therefore impor-
tant to determine whether ABD1 inhibits the elongation of
actin filament barbed ends in the presence of a saturating
amount of profilin. We found that profilin did not affect ABD1
activity or slightly enhanced its activity (Fig. S4A).

Finally, we directly observed the effect of ABD1 on the elon-
gation of single actin filaments in total internal reflection fluo-
rescence (TIRF) microscopy. In this assay, 5% biotin-labeled
actin filaments are trapped on a streptavidin-biotin-PEG–
coated surface to facilitate the quantification of the barbed-end
elongation rate. In these conditions, we also observed that
ABD1 inhibits actin assembly. At the single filament level, the
details of the elongation clearly show that pauses occur in the
presence of ABD1, resulting in the presence of blocked small
filaments, whereas filaments elongate at the rate of the con-
trol between pauses (Fig. 2 (A–C) and Movies S1 and S2). In
the presence of ABD1, the fraction of blocked filaments
increases with time to reach 50% after 600 s at 2 �M ABD1
(Fig. 2D). Altogether, these observations clearly show that
ABD1 blocks actin filament barbed-end elongation in a cap-
ping-like manner.

ABD1 activity is masked by an intramolecular interaction with
R9

Interestingly, full-length talin, in contrast with isolated
ABD1, remained inactive (Fig. 1A), suggesting that ABD1 activ-

ity is masked by an intramolecular interaction. To identify the
domain that inhibits ABD1 activity, we compared the activity of
talin constructs encompassing the N-terminal ABD1 domain
and various deletions of the rod domain. We found that a talin
construct (talin 196 –1822) ending after the R9 five-helix bun-
dle was almost inactive, whereas a talin construct (talin 196 –
1659) ending before R9 was fully active (Fig. 3, A and B). These
observations indicate that R9 plays a critical role to keep ABD1
inactive. Talin constructs, containing combinations of exposed
ABD1 and ABD2 (talin 196 –1659) or exposed ABD1 and ABD3
(196 –2541-�912–2299), inhibit actin assembly, indicating that
ABD1 activity does not combine with ABD2 or ABD3 to create
a different activity (Fig. 3B).

To determine whether R9 was sufficient to inhibit ABD1, we
expressed R9 as an isolated protein and tested its role on the
inhibitory activity of isolated ABD1. Our results demonstrated
that R9 is sufficient to reverse the activity of ABD1, whereas R9
alone did not affect actin assembly (Fig. 4, A and B). This result,
indicating that actin and R9 binding to ABD1 are mutually
exclusive, was confirmed by a co-sedimentation experiment in
which increasing amounts of R9 efficiently displaced ABD1
from actin filaments (Fig. 4, C and D), without binding to actin
(Fig. S5).

To define the ABD1-actin binding interface involved in the
barbed-end capping-like activity, we performed a systematic
mutagenesis analysis of ABD1. Because the sensitivity of ABD1
activity to ionic strength indicates that the ABD1-actin interac-
tion is mainly electrostatic, we restricted this analysis to acidic
and basic amino acids. We verified that our mutants were
not unfolded by showing that they all retained the ability to
interact with the side of actin filaments in a co-sedimenta-
tion assay (Fig. S6). Interestingly, we found several point
mutations in basic residues that abolish ABD1 activity (Fig.
5, A and B). We also showed that the ABD1 K324E mutant,
which is defective for barbed-end inhibition but not for side
binding (Fig. 5 (A and B) and Fig. S6), reverses the inhibitory
activity of the wildtype form of ABD1 in a kinetic assay (Fig.
S7). This result indicates that actin filament side binding is
necessary but not sufficient for the inhibitory activity of
ABD1, which requires an additional set of basic residues to
alter barbed-end dynamics.

Because most of these basic residues have been found by
previous studies (14) to be involved in PIP2 binding, we tested
the effect of PIP2 micelles and found that they reverse the activ-
ity of ABD1 (Fig. 5C). When placed on the known crystal struc-
ture of ABD1 (talin F2F3), these residues form a clear binding
surface that spans along the F2 and F3 subdomains of ABD1
(Fig. 5D). Interestingly, several of these basic residues of F3
were also found to interact with R9 in the crystal structure of
the F3-R9 complex (12) (Fig. 5E), explaining why R9 binding to
ABD1 interferes with the activity of ABD1 on actin assembly
(Fig. 4).

Evidence for an integrin-talin complex that inhibits actin
assembly

Previous reports also showed that R9 and the cytoplasmic tail
of integrin-� compete for ABD1 binding (12). Whether the
binding of integrin-� to ABD1 can release the R9-ABD1 auto-
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inhibitory contact or keep it dissociated after talin activation to
form an integrin-talin complex that inhibits barbed-end elon-
gation is not known. Studying the binding of the cytoplasmic
tail of integrin-� to talin head in our assays is difficult because
the affinity is very low (Kd � 273 �M for talin-1–integrin-�3,
(34)). In cells, integrin clustering could favor the binding of
integrin to talin through an avidity effect. To determine the
activity of an integrin-talin-actin complex, we designed a syn-
thetic peptide of integrin-�3 carrying mutations (DTAN)/(VE)
between the membrane-distal (MD) and membrane-proximal
(MP) regions that are expected to increase the integrin-talin

affinity by a factor of 1000, according to similar mutations per-
formed in integrin-�1D (34) (Fig. S1B). We tested the ability of
this integrin peptide to reverse the ABD1-R9 interaction, using
the inhibition of actin assembly as a readout of ABD1 exposure.
First, we showed that integrin restores the ability of ABD1 to
inhibit actin assembly in the presence of a saturating concen-
tration of R9, indicating the existence of an active integrin-
ABD1-actin ternary complex that is protected from R9 inhibi-
tion (Fig. 6A). We also tested the ability of this integrin peptide
to activate longer autoinhibited constructs, such as full-length
talin and talin 196 –1822. This peptide induced the inhibition of

A B 

C D 

Actin 
alone

Actin + 
ABD1

Time lapse 
Kymographs 

Actin 
alone

Actin + 
ABD1 200 s 

5 m 

0 s 110 s 230 s 350 s 470 s 
3 m 

0 s 110 s 230 s 350 s 470 s 
3 m 

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5

El
on

ga
tio

n 
ra

te
 (s

ABD1 ( M) 

-1
) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800

Actin alone
+ 0.1 M ABD1
+ 0.5 M ABD1
+ 1 M ABD1
+ 2 M ABD1

Fr
ac

tio
n 

of
 b

lo
ck

ed
 b

ar
be

d 
en

ds

Time (s)
Figure 2. Real-time observation and quantification of the inhibition of barbed-end elongation by talin ABD1 in TIRF microscopy. Conditions were as
follows: 1.5 �M Mg-G-actin (5% Alexa 488- and 5% biotin-labeled) in 5 mM Tris, pH 7.8, 200 �M ATP, 0.8% methylcellulose, 1 mM 1,4-diazabicyclo(2,2,2)-octane,
25 mM KCl, 1 mM MgCl2, 200 �M EGTA, 10 mM DTT supplemented with 0, 0.1, 0.5, 1, and 2 �M of talin ABD1. A, time lapse of the elongation of single actin filaments
in the absence (top) or presence (bottom) of 1 �M ABD1. Scale bar, 3 �m. See the corresponding Movie S1 and Movie S2. B, kymographs of the filaments shown
in A. The fluorescence intensity was measured along the length of a single filament (vertical axis) for each frame of the time lapse (horizontal axis). In contrast
with the linear elongation of the control filaments (left), pauses (arrow) were observed in the presence of talin ABD1, indicating barbed-end capping-like events
(right). C, elongation rate (s�1) of the filaments during the growing periods (between pauses), in the presence of the indicated concentrations of talin ABD1.
Data are mean � S.D. (error bars). D, quantification of the data shown in A and B. The fraction of blocked filaments is plotted as a function of time in the absence
or presence of the indicated concentrations of talin ABD1. For C and D, the number of filaments that we analyzed are n � 121 (0 �M ABD1), n � 82 (0.1 �M ABD1),
n � 118 (0.5 �M ABD1), n � 324 (1 �M ABD1), n � 200 (2 �M ABD1).
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actin assembly by talin 196 –1822 (Fig. 6, B and C). However,
this peptide could activate neither full-length talin nor
full-length talin carrying the E1770A mutation, previously
described to break the ABD1-R9 interaction (12), suggesting
that the dimerization of full-length talin, together with addi-
tional autoinhibitory contacts, stabilizes the inactive conforma-
tion of talin (Fig. S8). We also found that the integrin-�3
peptide phosphorylated on tyrosine 747 of the NPLY motif was
slightly less efficient at activating talin 196 –1822 than the non-
phosphorylated one (Fig. 6C), in agreement with previous find-

ings showing that this phosphorylation reduces talin-integrin
binding (35).

Discussion

Our study revealed that talin ABD1 inhibits actin filament
barbed-end elongation in a regulated manner (Fig. 7, A and B).
Talin adds to the list of proteins that target actin filaments
barbed ends in FAs, including VASP, vinculin, tensin, and
formins (5, 7, 8, 36). Like vinculin tail, talin ABD1 binds to the
side of actin filaments and inhibits barbed-end elongation. In
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both mechanisms, barbed-end inhibition requires amino acids
that are not necessary for side binding. Determining the result
of the combination of these similar activities in the force-de-
pendent talin-vinculin complex will be the subject of future
studies.

In FAs, the elongation of actin filaments is expected to
release the actomyosin-based tension in stress fibers. Con-
versely, the stable anchoring provided by actin filament barbed-
end capping in FAs could be a means to increase the traction
force applied by stress fibers on FAs and ECM. Another inter-
esting possibility is that all the barbed-end capping proteins
mentioned above, including talin, anchor the filaments with
their barbed ends facing FAs and their pointed ends pointing
outward, to create the appropriate orientation for actomyosin
contraction.

Interestingly, we identified four lysines in the F3 part of
ABD1 (Lys-318, Lys-320, Lys-322, and Lys-324) that are
involved in the inhibitory activity and that were previously
described in the F3-R9 autoinhibitory interaction (12, 13). This
observation explains why an autoinhibited construct of talin
(residues 196 –1822 or full-length) does not inhibit actin poly-
merization (Fig. 7A). Although we used a high-affinity mutant
of integrin-�3 to disrupt this interaction, as a tool to demon-
strate the existence of an integrin-talin-actin complex, the
affinity of the wildtype integrin-�3 tail for talin (Kd � 273 �M

(34)) is probably not sufficient to break the ABD1-R9 intramo-
lecular interaction. It is more likely that other regulators, such
as RIAM, synergize with integrin to disrupt the ABD1-R9 inter-
action of the autoinhibited conformation (16), allowing ABD1
to bind actin. Alternatively, the calpain-mediated cleavage of
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Figure 4. The ability of talin ABD1 to bind to actin filaments and inhibit polymerization is regulated by the ABD1-R9 intramolecular interaction. A,
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the region linking the head and the rod of talin produces
enough talin head that constitutively interacts with both integ-
rin and actin (18).

Our findings also shed light on the mechanism by which
actin could modulate integrin activation by talin (Fig. 7). Integ-
rin activation occurs through outside-in and inside-out mech-
anisms. The outside-in mechanism involves the binding of
ECM to integrin, inducing integrin extension. The inside-out
mechanism involves the binding of talin F3 to the cytoplasmic
tail of integrin-�. Talin first interacts with the integrin MD site,
inducing its ordering (37). This first step is followed by the
binding of the lysine 324 of F3 (Lys-327 in talin-2) to an acidic
residue of the integrin MP site (Asp-723 in integrin-�3 or Asp-
729 in integrin-�1). This interaction brings the positively
charged interface, made of basic residues of F2 and F3, in close
proximity to the negative charges of PIP2 heads at the inner face

of the plasma membrane (Fig. 7C). The interaction between
talin Lys-324 and integrin-�3 Asp-723 also disrupts the salt
bridge between this acidic residue and a basic residue of the �
subunit (Arg-995 in �IIb), allowing the dissociation of the � and
� subunits and their extension in a high-affinity conformation
for ECM (38). In this conformation, talin F3 interacts with
integrin MD and MP sites, and both F2 and F3 are anchored to
the PIP2-containing membrane surface. The actin-binding sur-
face that we identified along F2 and F3 is nearly identical to the
one that interacts with PIP2-containing membranes, because
all of the mutations that reverse the inhibition of actin assembly
by ABD1 have also been described to alter the binding of PIP2
to liposomes in vitro (14). Our results confirm that PIP2 pre-
vents ABD1 to inhibit actin polymerization. Interestingly, our
mutagenesis study, showing that the lysine Lys-324 interacts
with actin barbed ends, implies that actin prevents lysine Lys-
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324 from interacting with the MP site, which is normally
required for integrin activation. Therefore, in the integrin-
ABD1-actin complex, integrin would remain inactive because
the F3 part of ABD1 only associates with the integrin MD site,
whereas the MP site remains dissociated. In this conformation,
ABD1 would not associate with the PIP2-containing membrane
leaflet, leaving enough space for an actin filament to bind. In
support of this hypothesis, the interaction between talin F3 and
the isolated integrin MD site has been reported by others (37,
39). In addition, mutations in the MP region of integrin, includ-
ing a K324D charge swapping, similar to the K324E we used,
abolish integrin activation in cells and abrogate talin binding to
the MP site but not to the MD site (37, 38).

It is generally believed that, in FAs, the ABD1-containing
talin head lies on the membrane, where it activates integrin by
the inside-out pathway (11), whereas the C-terminal ABD3
domain senses the actomyosin force to induce the formation of
the mechanosensitive talin-vinculin complex, which is the first
step toward the maturation of FAs (9). More recently, ABD2
has been involved in force transmission too (30). Our findings
suggest an alternative mechanism to couple integrin to the
actin cytoskeleton through the N-terminal ABD1. In this con-
formation, the talin rod does not sense force, and the integrin
MP region cannot contribute to the inside-out integrin activa-
tion. This mechanism would allow the retrograde actin flow to
drag inactive integrins inside FAs. The mechanism that we
identified could also prevent inactive integrins from diffusing
away from FAs between two activation events, which appears
necessary for a very dynamic and adaptive process like integrin
activation. Finally, it is also possible that the integrin-ABD1-
actin complex transmits enough force to induce the mechani-
cally induced transition from the closed to the open high-affin-
ity conformation of integrin (40, 41).

Experimental procedures

Recombinant cDNA constructs and peptides

cDNAs encoding for human talin-1 196 – 405 (ABD1), 196 –
309 (F2), 309 – 405 (F3), 196 –1659, 196 –1822, 951–1659
(ABD2),1655–1822 (R9), and 2300 –2541 (ABD3) were con-
structed by PCR amplification of the full-length talin cDNAs
and subcloning of the resulting DNA in a pGEX6P1 plasmid
(GE Healthcare). An N-terminal glutathione S-transferase
(GST) tag is present in the pGEX6P1, and a C-terminal His6 tag
was introduced by PCR for talin 196 –1659, talin 196 –1822, and
ABD2. Talin 196 –2541�912–2299 (ABD1–3) was cloned into
a pETM plasmid with an N-terminal StrepTagII and a C-termi-
nal His6 tag. Full-length talin carrying E1770A was generated
from full-length talin cloned into pET101-TOPO (28, 29). The
following integrin-�3 peptides were synthesized by Proteo-
Genix (France): KLLITIHDRKEFAKFEEERARAKWVENPLYP-
KEATSTFTNITYRGTC and KLLITIHDRKEFAKFEEERARA-

A 

B 

C 

ABD2 
ABD1 

R9 

ABD2 
ABD1 ABD1ABD1 

R9 

ABD1 

R9 

ABD1 Integrin- 3 

Time (s) 

Integrin- 3 

0

20

40

60

80

100

120

0 200 400 600 800

Actin alone (1 M)
+ ABD1 (1 M)
+ ABD1 + Integrin- 3 (5 M)
+ ABD1 (1 M) + R9 (1 M)
+ ABD1 (1 M) + R9 (1 M) + Integrin- 3 (5 M)

Fl
uo

re
sc

en
ce

 (a
.u

.)

0

20

40

60

80

100

0 200 400 600 800 1000

Actin alone (1 M)
+ Talin 196-1822 (1 M)
+ Integrin- 3 (9 M)
+ Talin 196-1822 (1 M) + Integrin- 3 (9 M)

Fl
uo

re
sc

en
ce

 (a
.u

.)

Time (s)

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Talin 196-1822 + Integrin- 3-P
Talin 196-1822 + Integrin- 3

El
on

ga
tio

n 
ra

te
 (a

.u
.)

Integrin- 3 or Integrin- 3-P ( M)

Figure 6. Evidence for an integrin-talin-actin ternary complex that inhib-
its actin assembly. A, barbed-end elongation was measured in the presence
of 100 pM spectrin-actin seeds and 1 �M Mg-ATP–G-actin (10% pyrenyl-la-
beled) alone (dark blue) and in the presence of 1 �M talin ABD1 alone (orange),
1 �M ABD1 � 5 �M integrin-�3 (DTAN)/(VE) peptide (light blue), 1 �M ABD1 �
1 �M R9 (red), 1 �M ABD1 � 1 �M R9 � 5 �M integrin-�3 (DTAN)/(VE) peptide
(green). B, barbed-end elongation was measured in the presence of 100 pM
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(blue) and in the presence of 1 �M talin 196 –1822 (red), 9 �M of integrin-�3
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KWVENPLpYPKEATSTFTNITYRGTC (where pY represents
phosphotyrosine).

Protein purification

All of the recombinant proteins were expressed using a sim-
ilar protocol. First, the plasmid of interest was transformed in
Escherichia coli (BL21 DE3, Invitrogen). Typically, transformed
bacteria were grown in 4 – 8 liter of LB medium containing the
appropriate antibiotics at 37 °C until the absorbance measured
at 600 nm reached 0.6 – 0.8. The culture was then incubated on
ice until the temperature reached 16 °C precisely. The expres-
sion of the recombinant proteins of interest was induced by
adding 1 mM isopropyl 1-thio-�-D-galactopyranoside to the
medium during 16 h at 16 °C. After centrifugation, the pellet
was lysed by sonication in 50 mM Tris, pH 7.8, 500 mM NaCl, 1%
Triton X-100, 1 mM �-mercaptoethanol, 10 �g/ml benzami-
dine, and 1 mM PMSF.

The proteins expressed as N-terminal GST fusions were
bound to glutathione-Sepharose (GE Healthcare) during 2 h at
4 °C on a rotating wheel and washed with 50 mM Tris, pH 7.8,
500 mM NaCl, 1 mM �-mercaptoethanol. The protein of inter-
est was cleaved from its GST tag by the PreScission protease
(GE Healthcare) during 16 h at 4 °C on a rotating wheel and
recovered in the supernatant after a low-speed centrifugation.
Proteins containing a C-terminal His6 tag (ABD2, 196 –1659,
and 196 –1822) were further bound to Ni2�-nitrilotriacetic
acid–agarose (Macherey-Nalgene); washed with 50 mM Tris,
pH 7.8, 500 mM NaCl, 20 mM imidazole, 1 mM �-mercaptoeth-
anol; and eluted with 50 mM Tris, pH 7.8, 500 mM NaCl, 250 mM

imidazole, 1 mM �-mercaptoethanol. Talin 196 –2541�912-
2299 (ABD1–3) was bound to Ni2�-nitrilotriacetic acid–
agarose (Macherey-Nalgene), washed with 50 mM Tris, pH 7.8,
500 mM NaCl, 20 mM imidazole, 1 mM �-mercaptoethanol and
eluted with 50 mM Tris, pH 7.8, 500 mM NaCl, 250 mM imidaz-

ole, 1 mM �-mercaptoethanol. Proteins were finally dialyzed in
20 mM Tris, pH 7.8, 100 mM KCl, 1 mM �-mercaptoethanol;
frozen in liquid nitrogen; and stored at �80 °C. Full-length talin
and the E1770A mutant were expressed and purified as
described previously (28, 29).

Chicken gizzard fractionation

To fractionate chicken gizzards, we adapted the beginning of
the classic protocol used for talin purification (42). Chicken
gizzards (7 g) were mixed in 70 ml of ice-cold buffer (5 mM Tris,
pH 7.0, 1 mM PMSF (protease inhibitor), and 5 mM EGTA) and
homogenized in a Waring blender with three 10-s bursts at full
speed. The suspension was centrifuged at 4 °C for 10 min at
10,000 � g. The supernatant (S1) was kept. The pellet (P1) was
resuspended in 70 ml of ice-cold buffer (50 mM Tris, pH 9.0, 1
mM PMSF, and 5 mM EGTA) and homogenized in a Waring
blender with three 10-s bursts at full speed. The suspension was
then incubated at 37 °C for 30 min and centrifuged at 4 °C for 10
min at 10,000 � g to separate the soluble FA proteins (S2)
and the membrane-associated proteins (P2). Comparable
samples of S1, P1, S2, and P2 were submitted to Western blot
analysis with an antibody directed against talin head (TA205,
Bio-Rad). This experiment was reproduced twice with the
same results.

F-actin co-sedimentation assay

We performed co-sedimentation assays to measure the
competition between actin filaments and R9 for talin ABD1.
Increasing concentrations of R9 (0 – 4.8 �M) were incubated
with 2.3 �M ABD1 and 5 �M F-actin in 5 mM Tris, pH 7.8, 25 mM

KCl, 1 mM MgCl2, 200 �M ATP, 1 mM DTT for 15 min at room
temperature. After centrifugation at 90,000 rpm in a TL100
centrifuge (Beckman), the pellets and supernatants were sepa-
rated, loaded on SDS-PAGE, and quantified using the ImageJ
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software. This experiment was reproduced three times in sim-
ilar conditions with the same results.

Polymerization assay

Actin polymerization was monitored by the increase in
fluorescence of 10% pyrenyl-labeled actin. Actin polymeri-
zation was induced by the addition of 25 mM KCl (unless
specified), 1 mM MgCl2, and 0.2 mM EGTA to a solution of
10% pyrenyl-labeled Ca-ATP–G-actin containing the pro-
teins of interest. Fluorescence measurements were carried
out in a Xenius spectrofluorimeter (Safas, Monaco). For
kinetic experiments, 100 pM spectrin-actin seeds were added
to the reaction for barbed-end elongation measurements,
and 25 nM gelsolin-actin (1:2) complexes were added for
pointed-end elongation measurements. All of the experi-
ments have been reproduced two or three times with the
same conclusions.

Observation and measurement of single actin filament
elongation by TIRF microscopy

Our protocol is a modification of the protocol used to study
vinculin activity (5). To force the filaments to grow at the sur-
face of the coverslip, we first irradiated coverslips with deep UV
radiation for 1 min and incubated them with 10% biotin-labeled
PLL-PEG for 1 h at room temperature. The coverslip was then
washed extensively with water and dried with a nitrogen
stream. Flow cells containing 40 – 60 �l of liquid were prepared
by sticking the PLL-PEG– coated coverslip to a slide with dou-
ble-faced adhesive spacers. The chamber was first incubated
with 0.1 mg/ml streptavidin for 5 min and washed with washing
buffer (5 mM Tris, pH 7.8, 200 �M ATP, 10 mM DTT, 1 mM

MgCl2, 25 mM KCl). The chamber was then saturated with 10%
BSA for 5 min and washed with washing buffer. The final reac-
tion was then injected into the chamber. A typical reaction was
composed of 1.5 �M 5% Alexa 488, 5% biotin-labeled Mg-G-
actin in 5 mM Tris, pH 7.8, 200 �M ATP, 0.8% methylcellulose,
1 mM 1,4-diazabicyclo(2,2,2)-octane, 25 mM KCl, 1 mM MgCl2,
200 �M EGTA, 10 mM DTT supplemented with 0, 0.1, 0.5, 1, or
2 �M talin ABD1. Finally, we sealed the flow chamber with
VALAP (a mixture of Vaseline, lanolin, and paraffin) and
observed the reaction on an Olympus AX71 inverted micro-
scope equipped with a �60 (numerical aperture 1.45) objective
(Olympus) and a Blues 473-nm laser (Cobolt). The time-lapse
videos were acquired by Metamorph and subsequently ana-
lyzed by the ImageJ software.
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